The Alternative Uses Task: A Comparison between various Scoring Methods

Charlotte Tanis

University of Amsterdam
Abstract

The Alternative Uses Task is a frequently used task to assess creativity. To score the AUT, a new algorithm-based consensual assessment technique was developed. This algorithm and two traditional methods, uniqueness and expert judges, were evaluated in terms of reliability and validity. Data consisted of an available set ($n = 303$) and newly obtained data ($n = 157$). Uniqueness scoring showed a very strong relation with fluency, strong internal consistency, and moderate to strong test-retest reliability. Judges scores had a weak relation with fluency, moderate internal consistency, strong inter rater reliability, and weak to moderate test-retest reliability. The algorithm was not related with fluency and had a moderate internal consistency. All methods showed either no or weak relation with CAQ and IWB. None of the methods showed consistently adequate qualities for reliable and valid testing. The algorithm, however, does show potential and could be further improved by data cleaning and extending the reference database.

Keywords: creativity, divergent thinking, Alternative Uses Task
The Alternative Uses Task: A Comparison between various Scoring Methods

Creative ideas come in a wide variety of shapes and forms, making it difficult to judge how creative ideas truly are. According to the most commonly used definition, there are two broad criteria a creative idea should satisfy (Runco & Jaeger, 2012). First of all, for something to be creative it has to be original. This might not be surprising, since a common idea can hardly qualify as creative after all. Though crucial, originality alone is not sufficient; a creative idea should be useful as well. Stein (1953) was the first to combine originality and utility to define creativity. According to Stein, “the creative work is a novel work that is accepted as tenable or useful or satisfying by a group in some point in time” (p. 311). This study will compare various scoring methods of the Alternative Uses Task (Guilford, 1967) and evaluate their suitability in measuring creativity.

In order to adequately examine creativity, assessments should have high reliability, validity, and, preferably, should be user-friendly (Baas & Van der Maas, 2015). The reliability of a test indicates to what extent the measurements represent the true values. It can be interpreted as the variance in scores introduced by differences between participants as opposed to variance introduced by error. Test scores become meaningless when the reliability of a test is low, because it would be unclear where differences in scores stem from. Reliability is estimated by the test-retest reliability, internal consistency, and inter-rater reliability (IRR) of a test (Cook & Beckman, 2006). The test-retest reliability shows to what extent the scores of a test can predict the scores of the same test taken at a different moment in time. The internal consistency is a measure for the relationship between the different items of a test. Thus, a high internal consistency indicates that different items of a test measure the same concept. IRR is only relevant when the scoring is done by judges. It shows the degree to which different judges agree on the score.
High reliability ensures that little measurement error is introduced, but this does not guarantee that a test actually measures what it is supposed to measure. This is where validity comes into play. It is impossible to determine with a direct evaluation if a test is valid, but evidence can be gathered that indicate that the interpretations of the results are supported (Downing, 2003). Scores on a creativity test should be correlated with other measures of creativity to ensure an appropriate convergent validity. It is also possible to look at other constructs that have been shown to be related to creativity. For instance, a large body of research has found a correlation between creativity and openness to experience (Silvia et al., 2008). For the divergent validity of a test, there should be no correlation with tests that do not measure creativity, for example a social desirability questionnaire. A high predictive validity is achieved when a test of creativity also shows accuracy in predicting creative behaviour.

There are many measures of creative potential, behaviour, and achievement (Baas & Van der Maas, 2015). Creative potential is most often measured with divergent thinking tasks (Runco, Abdulla, Paek, Al-Jasim, & Alsuwaidi, 2016). A widely used divergent thinking task is the Alternative Uses Task (AUT) designed by Guilford (1967). In this task participants are asked to come up with as many creative uses as possible for a common object. A brick, for example, can be used to build a house, but also to secure one’s tent while camping or could be worn as a highly uncomfortable hat. Different methods are available to score the AUT, each with their own merits.

The most simple method bases the score on the fluency of ideas. In order to do this, the number of responses are simply counted for each participant. This objective measure is both fast and applied with little difficulty, but fails to take the originality or usefulness of ideas into account. A participant who lists many common uses will receive a higher score than one who lists just a few highly creative responses. The number of responses does not
reflect the creative potential of a participant. It is, therefore, argued that originality and fluency should be two distinct factors. To ensure the discriminant validity of the AUT, its scores should not be related to the fluency measure (Silvia et al., 2008). Differences in scores could otherwise (for a large part) be explained by variation in fluency, instead of true differences in creativity. However, the results of many commonly used scoring methods are currently influenced by the fluency of ideas (Plucker, Qian, & Wang, 2011).

A different objective scoring method rates originality by the statistical uniqueness of responses. One way to score uniqueness is to start utilising a points system. One point can be given for every response that only occurs once in the sample, and no points for all other responses. For every participant the points of his or her responses are counted to obtain the final score. A drawback of this method is that the sample size has a direct influence on the final scores (Silvia et al., 2008). Another way of scoring uniqueness assigns a point to responses that are given by less than five percent of the sample (Milgram & Milgram, 1976). This reduces the effect of the sample size on the scores, but other complications remain. For example, an uncommon response is not necessarily a creative response. Both responses that are extremely creative but without practical use, and responses that are such common uses that only very few people will take the time to write down will be rewarded (Silvia et al., 2008). Furthermore, there is a strong relation between fluency scores and uniqueness scores, so an adequate discriminant validity is not accomplished (Silvia et al., 2008).

To overcome these issues, the consensual assessment technique (CAT), can be used instead. This technique, first described by Amabile (1982), utilises expert evaluations to score the creativity of responses. When applied to the AUT, each response receives a creativity score from several expert judges, and these scores are averaged to get the creativity score of a single response (Silvia, 2011). Most commonly, for each participant the scores of all answers
are averaged to calculate the final score. This score is not dependent on the number of ideas, but merely looks at the quality of ideas submitted. To ensure the reliability of this method, a high inter-rater consistency is required between judges. Kaufman, Lee, Baer and Lee (2007) showed that at least five raters and 15 items are needed to expect an agreement between judges above .80 when judging the creativity of photograph captions. A drawback of this time intensive method is that the final score would be averaged from all given responses. Participants with two highly creative responses will receive a higher score than someone who has given two responses of the same quality, but also submitted two moderately creative responses. One could easily argue that the latter is a more creative result.

A novel method to score divergent thinking tasks depends on an algorithm. Beketayev and Runco (2016) used a semantics-based algorithm to score the Many Uses task. This task only differs from the AUT in the objects used. Fluency, flexibility and originality scores were obtained utilising a more traditional scoring method as well as an algorithm based score. Traditional flexibility scores were calculated by counting the categories of responses used, and originality scores were based on the uniqueness of answers. The algorithm used semantic networks to calculate the number of categories for the flexibility score. Originality scores were based on the distance between a participant’s responses in the semantic networks. There was a strong relation between the flexibility scores produced by the traditional method and the algorithm. The originality score of the algorithm, however, was only weakly related to the traditional originality score. Originality scores of the algorithm were based on existing norms, instead of comparing responses with other responses. The authors thus conclude that the semantic based algorithm works well to investigate ideational flexibility, but might have some drawbacks when measuring the originality of ideas.
An automatic scoring method such as the algorithm used by Beketayev and Runco (2016) has great benefits. No judges are required to score the test, making the scoring process notably more cost and time efficient. This could persuade more researchers to include creative potential in new studies (Silvia, Martin, & Nusbaum, 2009).

A new large-scale consensual assessment technique in the form of an algorithm was developed for this study with the aim to accurately measure the originality of responses of the AUT. Scoring is done based on a large database of previously obtained responses. After cleaning the data, all responses in the database were rated by expert judges on both originality as well as utility. New responses are matched to ones already in the database, and given a score accordingly.

By introducing this novel scoring method and comparing three scoring methods in terms of reliability and validity, this study will contribute to earlier research into the psychometric qualities of the AUT. The methods compared are uniqueness, the average of expert ratings, and the average of the algorithm’s rating. Besides two to four versions of the AUT, participants will complete two Verbal Fluency tasks, the Raven progressive matrices task, and part two of the Creative Achievement Questionnaire.

While not scoring the usability of answers given to the AUT, and thereby not being able to definitively speak to the whole of creativity, this study could be a valuable addition to current discourse. The primary goal is to research if an algorithm-based scoring method can yield equally reliable, if not more reliable, results as scoring by judges. If this is proven to be the case, not only would this call for more in-depth research into algorithm based scoring methods, it provides potential for low-cost creativity testing.

Methods

Participants
The results in this study are based on two distinct datasets. Data of the first set was collected in 2016 and made available for this study. This dataset will hereafter be referred to as “data 2016”. Data of the second set was collected during the bachelor project for which this thesis was written, and is specified as “data 2017”. The only inclusion criterium for both sets was an age between 17 and 25. A total of 10 and 14 participants were excluded from data 2016 and 2017 respectively for not matching the criteria.

After corrections, participants of data 2016 consisted of 303 first year Psychology students (91 male, 212 female, $M_{age} = 20.1$ years, age range: 17-25 years) from the University of Amsterdam. Students were required to participate in order to complete their first year.

Participants of data 2017 consisted of 157 Dutch students (88 male, 69 female, $M_{age} = 19.8$ years, age range: 17-24 years). Students were recruited from the Nova College in Hoofddorp (trade school, $n = 97$), the Faculty of Business and Economics of the Amsterdam University of Applied Sciences ($n = 30$), and the Faculty of Science of the UvA ($n = 30$). One humanities, 125 social science, and 31 science students took part in this study. All participants received a compensation of €10. This research was approved by the local Ethics Review Board prior to data-collection.

Materials

During the collection of data 2017, participants completed part two of the Creative Achievement Questionnaire (CAQ), two to four AUT’s, a 42 item Raven Progressive Matrices task (RPM), two Verbal Fluency tasks (VF), and the Innovative Work Behaviour scale (IWB).

Part two of the CAQ was used to measure creative achievement. In this test, concrete achievements are listed in ten domains such as visual arts and scientific discovery. Participants are asked to indicate which of the achievements apply to them. Each domain
contains eight achievements for which zero to seven points are rewarded. It is allowed to check more than one achievement per domain. To illustrate, items in the domain “visual arts” worth 0, 1, 4, and 7 points respectively are: “I have no training or recognised talent in this area. (Skip to Music)”, “I have taken lessons in this area”, “I have had a showing of my work in a gallery”, and “My work has been critiqued in national publications”. To calculate the total creative achievement score all points are added up, leading to a minimum score of 0 and a maximum score of 280. The CAQ has a high test-retest reliability ($r = .81$), high internal consistency ($\alpha = .96$), and is correlated with other measures of creativity (Carson, Peterson, & Higgins, 2005).

The items used in the AUT (Guilford, 1967) were a brick, fork, paperclip and towel. Participants were instructed to name as many possible creative uses for these objects within a timeframe of two minutes for each object. Paperclip and towel were added after part of data 2017 was already collected, as participants completed the tasks quicker than originally presumed.

The RPM (Raven, 2000) consisted of 24 even numbered Standard Progressive Matrices items and 18 even numbered Advanced Progressive Matrices items. The items used in the VF tasks (Hills, Jones, & Todd, 2012) were animals and occupations. For both VF tasks there was a time limit of one minute in which participants had to write down as many possible types of animals an jobs respectively. Both the RPM and VFs were used to collect data for different studies, and therefore will not be further discussed in this article.

The IWB scale is a test developed by Janssen (2000) to measure innovative work behaviour. Innovative work can be defined by three aspects, namely idea generation, idea promotion, and idea realisation. The IWB scale contains nine items in total, and three items per aspect, i.e. “I often create new ideas for difficult issues” (idea generation). Respondents
indicate how often they perform each behaviour on a seven-point Likert scale (1 = never, 7 = always). For each item a score of one to seven points are given, corresponding to the numbers of the Likert scale. The average score of the nine items is used as the total IWB score. Janssen (2000) reports correlations between the different aspects of innovative work behaviour ranging between .76 and .85, and a high internal consistency ($\alpha = .96$).

During the collection of data 2016, participants also completed the CAQ, four AUT’s and IWB. Since this was a large scale data collection, participants also completed a variety of different tasks for different studies. These other tasks will not be discussed in this article.

Procedure

Collection of data 2017 took place in classrooms at schools and universities where participants were recruited. Different sessions were held where groups of students took part in the study at the same time. Students completed all tasks online using their own laptop. There was a time limit for the experiment of one hour, after which the experiment automatically stopped.

After giving informed consent, a couple of basic questions such as age, gender, and field of studies followed. Participants then completed the tasks in the following order: AUT (brick, fork, paperclip, towel), VF (first animals, then jobs), RPM, and CAQ. After these tasks, participants were shown AUT responses from data 2016 and judged whether these were creative or not. Lastly, participants indicated how important (“not at all important”, “not important”, “neutral”, “important”, or “very important”) usability, innovation, suitability, and originality each were in judging creativity. After completion of the tasks, participants received the compensation in cash.

Data 2016 was collected in a large computer classroom at the UvA. Participants took part in multiple sessions of data collection spread over different days. Among a large number
of other tasks were the AUT’s, CAQ, and IWB. The four objects of the AUT were divided over different sessions. Brick and fork were part of an earlier session, and subset of students also did paperclip and towel during a later session. All tasks were completed on computers available in the classroom.

Originality scoring of the AUT

Scoring according to the uniqueness method rewards one point for every response that is given by less than five percent of the sample. All other responses get no points. For the final score all points are added.

To generate the average of the expert ratings, each response is scored for originality by two expert judges. Possible scores are one (not at all original) to five (very original). If a response is nonsensical, the response is scored zero. For every response, the average score of the two judges is calculated if both judges give a non-zero score. If one judge gives a score of zero, while the other does not, the non-zero score is used. If both judges give a score of zero, the response is not included in the final score. The final score for each participant is calculated by taking the average of the scores of the participant’s responses.

A database of unique responses per object was created to be able to produce a score by the algorithm. All responses from data 2016 were cleaned, i.e. spell-checked, punctuation and stopwords removed, and stripped of white space. The database for every object contained all unique cleaned responses. Every response in the database was given a score per expert judge by taking the median of the judge’s scores of that response. To calculate the score per response the average was taken of the median judge scores if both judges had a non-zero median. This average was rounded to the nearest integer. If one judge had a non-zero median and the other did not, the non-zero median was used. If the median of both judges was zero, the response was deleted from the database.
All responses from data 2017 were cleaned following the same steps taken while creating the database. The cleaned responses were then matched with the database. If the response could be located, it received the score from the database. If no match could be made, the response did not contribute to the total score. The average of matched responses formed the final score.

Statistical Analysis

Several analyses were applied for each measurement of originality discussed above. This was done on both data 2016 as well as data 2017, with the exception of the algorithm. Due to the algorithm utilising data 2016 as its database, it is impossible to analyse this same data set with the algorithm. Therefore, the analyses for the algorithm were only done on data 2017.

First, the correlation between fluency and originality scores on a participant level will be computed. Second, a reliability analysis will be conducted in terms of internal consistency, IRR, and test-retest reliability (where possible). Internal consistency will be determined by the correlation between originality scores on participant level of two different objects utilising the same scoring method. This will be calculated when data of different objects was collected during the same session. The intra class coefficient will be used to calculate the IRR for expert ratings on response level. The test-retest reliability will be determined by the correlation between originality scores on person level of objects when the data was collected during different sessions. Lastly, convergent validity will be assessed by the correlation between originality scores and CAQ scores, and between originality scores and IWB scores, both on participant level.
All correlations will be calculated with the cor.test function from the R stats package (R Core Team, 2016). The intra class coefficient will be calculated with the ice function from the R irr package (Gamer, Lemon, & Fellows, 2012).

Results

Both in data 2016 and 2017 not all participants completed every task. Table 1 shows the number of participants per object of the AUT. For Data 2017 the table also displays per object how many participants completed both AUT and IWB. Unfortunately, the data of the CAQ was corrupted and could not be used for analysis. Participants in data 2016 all completed both IWB and CAQ. All available data was used for analysis.

<table>
<thead>
<tr>
<th></th>
<th>Data 2016: n</th>
<th>AUT</th>
<th>AUT + IWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick</td>
<td>285</td>
<td>153</td>
<td>148</td>
</tr>
<tr>
<td>Fork</td>
<td>295</td>
<td>155</td>
<td>151</td>
</tr>
<tr>
<td>Paperclip</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towel</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick and Fork</td>
<td>185</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Paperclip and Towel</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All objects</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 (data 2017, brick and fork), 3 (data 2016, brick and fork), and 4 (data 2017, paperclip and towel) show the correlations between originality scores produced by different scoring methods of the AUT. These tables show the correlations within the object, and between objects for data collected during the same session. The algorithm was able to match
part of the responses with the database and give a score accordingly. Participants gave a total of 1061 responses for brick and 1089 for fork in data 2017, of which 683 and 664 were matched respectively.

The correlation between the scoring methods and the fluency measurement was computed within the object to assess the discriminant validity. Uniqueness is strongly related to fluency ($r = .88$ to $r = .95$). For the expert ratings these correlations range from very weak to weak ($r = -.29$ to $r = .16$). The algorithm scores were only computed for data 2017, and no significant correlations were found between these scores and fluency.

To compute the internal consistency, the correlations between person’s total scores based on the same scoring method applied to different objects used in the same session were computed. Both fluency, and uniqueness show a strong relation between the scores of different objects ($r = .66$ to $r = .71$ for fluency, and $r = .63$ to $r = .65$ for uniqueness). However, both expert ratings and the algorithm scores only show a moderate relation ($r = .48$ to $r = .57$ for expert ratings, and $r = .40$ for the algorithm scores).

For expert ratings, the IRR was assessed by computing a two-way mixed, agreement, average-measures intra class coefficient (ICC) for every object in the AUT. The ICC shows to what extent the different judges agree in their ratings across responses. Table 5 displays the ICC for every object. Good to excellent ICCs were found for all objects ($ICC = .76$ to $ICC = .97$) illustrating a high agreement between judges.

Table 5

<table>
<thead>
<tr>
<th></th>
<th>Data 2016</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Data 2017</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICC 95% CI</td>
<td>F df1 df2 p</td>
<td>ICC 95% CI</td>
<td>F df1 df2 p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>.76 [.74, .78]</td>
<td>4.25 3247 1797 < .001</td>
<td>.85 [.83, .87]</td>
<td>6.89 918 859 < .001</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note. A two-way, mixed, agreement, average-measures intra class coefficient (ICC) was used.

The last reliability measure investigated was the test-retest reliability. This could only be computed using data 2016, since participants in data 2017 completed all tasks in one session. During collection of data 2016 both ‘brick’ and ‘fork’ were in one session, while ‘paperclip’, and ‘towel’ were in a later session. Table 6 shows the correlations between scores on each pair of objects, in different sessions, for every scoring method. Moreover, the correlation between the mean of ‘brick’ and ‘fork’ scores and the mean ‘paperclip’ and ‘towel’ scores is displayed. Fluency scoring had a moderate to strong test-retest correlation ($r = .48$ to $r = .69$). Both uniqueness scoring and expert ratings showed a weak test-retest relation (uniqueness: $r = .36$ to $r = .56$, judges: $r = .33$ to $r = .49$). Combining the scores of brick and fork, and of paperclip and towel resulted in higher correlations between the scores (fluency: $r = .72$, uniqueness: $r = .57$, judges: $r = .57$). However, these correlations still fall in the 95% confidence interval when the scores of single objects are used.

Table 6

Data 2016: Correlations between scores on different objects of the AUT taken during different sessions to assess the test-retest reliability.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Fork</td>
<td>**.85 [.82, .87]</td>
<td>6.76</td>
<td>3970</td>
<td>355</td>
<td><.001</td>
<td>**.97 [.96, .97]</td>
<td>31.6</td>
<td>980</td>
<td>981 <.001</td>
</tr>
<tr>
<td>Paperclip</td>
<td>**.81 [.78, .83]</td>
<td>5.34</td>
<td>1454</td>
<td>519</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towel</td>
<td>**.78 [.75, .81]</td>
<td>4.65</td>
<td>986</td>
<td>779</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. A two-way, mixed, agreement, average-measures intra class coefficient (ICC) was used.
Note. Numbers in brackets are 95% confidence intervals of the correlation coefficients. All coefficients are significant at p < .05.

Convergent validity was assessed by computing the correlations between AUT scores and CAQ scores (only data 2016), and between AUT scores and IWB scores. Correlations between AUT scores and CAQ scores were not significant, very weak or weak (fluency: not significant to $r = .19$, uniqueness: not significant to $r = .26$, judges: not significant to $r = .26$). Correlations between AUT scores and IWB scores were also not significant, very weak or weak (fluency: not significant to $r = .17$, uniqueness: not significant to $r = .23$, judges: not significant to $r = .15$, algorithm: not significant).

Table 7
Intercorrelations for scoring methods of the AUT and the CAQ and IWB per AUT object to assess the convergent validity.

<table>
<thead>
<tr>
<th></th>
<th>Fluency</th>
<th></th>
<th>Uniqueness</th>
<th></th>
<th>Judges</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fork (session 1) vs. Paperclip (session 2)</td>
<td>Fluency</td>
<td>.48 [.36, .58]</td>
<td>Uniqueness</td>
<td>.50 [.38, .60]</td>
<td>Judges</td>
<td>.43 [.31, .54]</td>
</tr>
<tr>
<td>Fork (session 1) vs. Towel (session 2)</td>
<td>Fluency</td>
<td>.69 [.56, .78]</td>
<td>Uniqueness</td>
<td>.56 [.40, .69]</td>
<td>Judges</td>
<td>.49 [.32, .63]</td>
</tr>
<tr>
<td>Mean Brick and Fork (session 1) vs. Mean Paperclip and Towel (session 2)</td>
<td>Fluency</td>
<td>.72 [.60, .80]</td>
<td>Uniqueness</td>
<td>.57 [.41, .69]</td>
<td>Judges</td>
<td>.57 [.41, .69]</td>
</tr>
</tbody>
</table>
Discussion

Three originality scoring methods of the AUT, namely uniqueness, expert and algorithm scoring, were evaluated in this study in terms of reliability and validity. For a scoring method to perform well, it should have no correlation with fluency scoring, a high internal consistency, a high test-retest reliability, and high inter-rater reliability (if applicable). Moreover, it should be related to other measures of creativity such as the CAQ and IWB.

Uniqueness scoring had a strong relation to fluency scoring, indicating that it failed to measure an aspect independent of fluency. This is problematic, since fluency and originality...
are thought to be two unrelated factors (Silvia et al., 2008). Both the expert ratings and the algorithm scores did not have any or only a weak relation with fluency and hereby fulfilled this first criterium.

Uniqueness scoring, however, did outperform both expert ratings and algorithm scores with respect to the internal consistency. Scores on different objects were only moderately related for the latter two. This means that the object chosen to be used in the AUT had a great impact on the scores. This is undesirable, since the creative potential of the participant should be the only influence on the score.

The different judges producing the expert ratings did agree to a large extent as shown by the high IRRs. It can thus be concluded, as little variance in scores was introduced by differences between judges, that they scored consistently. While this adds to the reliability of the method, it does not provide an explanation for the insufficient internal consistency.

Both uniqueness scoring and expert ratings were shown to have a weak test-retest reliability. However, this is to be expected given their internal consistencies. When there is only a moderate relation between scores on different objects administered during the same session, it would be odd if this would improve when objects are administered during different sessions. The test-retest reliability did improve slightly when scores of different objects were combined. This could suggest that combining more than two objects might improve the test-retest reliability even more. A simulation study could be conducted to test if this hypothesis holds, and if so what number of objects should be combined to expect a satisfactory test-retest reliability.

An adequate convergent validity could unfortunately not be demonstrated in this study. None of the scoring methods consistently showed a strong relation with either the CAQ or the IWB. The proportion of significant relations was slightly higher for the CAQ
than the IWB. The correlations between CAQ and originality scores found in this study are lower than the correlation of .49 reported in earlier research (Carson et al., 2005). In the research of Carson et al. (2005), however, the originality score was constructed by combining multiple divergent thinking tests, while in this study a single AUT was used.

The scoring procedure of uniqueness and algorithm scoring could be further improved. This might result in a higher reliability for both measures. Cleaning the responses was done in the same manner for both measures. This could be done more thoroughly by abbreviating every word in the responses to the stem of the word, changing synonyms of words to the same default answer, and ignoring the order of words within a response.

For uniqueness scoring further cleaning could lead to less responses being scored as unique, since more variations of similar answers will be counted as identical, and thereby reducing the relation with fluency scores. For the algorithm scores, this could mean that more responses can be matched to the database and counted into the final score. A greater proportion of matched responses can furthermore be achieved by adding more data to the database. It is expected that increasing the matching rate will lead to an improvement in reliability.

Another suggestion for further research are including a personality test to measure openness to experience. Due to time constrctions it was not possible to include this measure in the current study. Earlier research has shown a relation between creative potential and openness to experience (Silvia et al., 2008). If this relationship can indeed be shown for the scoring methods discussed in this article it could add to the validity of the methods.

A final suggestion to improve both expert ratings and algorithm scoring, is to add utility into the score. At this moment the scores are solely based on originality. This is essential, but does not cover the definition of creativity completely, since usability is required
for an idea to be truly creative (Runco & Jaeger, 2012). A possibility would be to rate responses on both aspects, and use a weighted sum to come to a score. The exact weights to be used could be investigated in a future study.

Concluding, this study provides a clear indication that algorithm based research into creativity has great potential. While this study remains limited, it is worthy of further research with an extended database and improved cleaning process. Another interesting angle to consider is the potential for greater test-retest reliability by asking participants to complete Alternative Uses Tasks for more objects.
References

